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Abstract. We consider nonlocal effects, obtained by incorporating fractional derivatives in the kinetic
energy of a conventional Hamiltonian, to analyze physical properties of non-crystalline solids at very low
temperature. By using thermal Green functions, we deduce some experimentally observable quantities
such as the particle momentum distribution function, the particle energy distribution function, and the
specific heat. The agreement between the results obtained for the specific heat and the experimental data
suggests that the approach presented here may be useful as a phenomenological model to investigate
thermal properties of non-crystalline solids at low temperature.

PACS. 05.30.-d Quantum statistical mechanics – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear
dynamical systems

1 Introduction

The fractional approach has been used to face many
physical situations characterized by a non-usual dynam-
ical behavior. Some common examples are the anoma-
lous transport in disordered systems [1], relaxation to
equilibrium in systems (polymers chains and membranes)
with long temporal memory [2–5], enhanced diffusion in
active intracellular transport [6], random compressible
flows [7], and tumor development [8], among many others.
These situations have been faced by several approaches
as, for instance, the fractional diffusion equations which
emerge from the continuous time random walk formalism
by considering a long-tailed waiting time distribution or
jump length distribution with a diverging variance (Lévy
flights). The variety of applications of these equations has
also motivated the study of their solutions [9–14] by tak-
ing several scenarios into account, such as the analysis of
the behavior at the origin [15], systems with trapping or
recombination [16], the investigation of the changes pro-
duced by the presence of reaction terms [17,18] and the
fractional Kramers equation [19] related to them. In this
scenario, extensions of Schrödinger equation accomplish-
ing the fractional approach [20–22] have been analyzed by
considering the energy spectra of a hydrogenlike atom and
of a fractional oscillator in the semiclassical approxima-
tion, the parity conservation law [20], quark−antiquark
qq bound states treated within the non-relativistic po-
tential picture [21] and the quantum scattering prob-
lem [22]. However, the quantum statistics (the many par-
ticle theory) was not properly considered, leading us to
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address this work to this issue, which may bring several
applications to fractional approach. In this direction, we
apply the formalism developed here to investigate the non-
crystalline solids at very low temperature, where the ther-
mal properties of these materials differ markedly from
those of crystalline ones [23–25]. The differences are ev-
ident in the quasilinear temperature dependence of the
specific heat and in the approximately quadratic temper-
ature variation of the thermal conductivity. This impor-
tant problem has been investigated during the last decades
by several researchers which have proposed the tunnelling
model of two-level systems [25–27], analogy with super-
fluid helium [28,29], roton-like excitations [30], and soft-
potential model [31,32]. Others models such as the frame-
work of a quasi-particle model [33,34] have been recently
investigated. Although these models have been used quite
successfully for decades to describe non-crystalline solids
at very low temperature, the precise physical nature of
these systems still deserves a careful investigation [34,35].

2 Fractional approach and quantum statistics

We shall consider the following effective Hamiltonian

̂HFrac =
1

2mα

∫

drψ†(r, t)
(−�

2∇2
)α/2

ψ(r, t)

+
∫

drψ†(r, t)U(r, t)ψ(r, t)

+
1
2

∫

dr
∫

dr′ψ†(r, t)ψ†(r′, t)V (|r − r′|)ψ(r, t)ψ(r′, t), (1)

where ψ†(r, t) and ψ(r, t) are second quantized operators,
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mα is an effective constant,
(−�

2∇2
)α/2

ψ(r, t) ≡
∫

dp
(2π�)3 e

ip/�·r|p|αψ(p, t) is the quantum Reiz opera-
tor [22], U(r, t) represents an external field present in
the system and the last term is the interaction between
the components of the system. Note that the first term
of equation (1), which corresponds to the kinetic energy,
has incorporated fractional derivatives. This extension of
the kinetic energy to fractional operators incorporates a
nonlocal behavior which is not present in the usual form.
A direct consequence, via Heisenberg equation for ψ(r, t),
verified from equation (1) concerns the dynamical equa-
tion for ψ(r, t), which is actually given by

i�
∂

∂t
ψ(r, t) =

1
2mα

(−�
2∇2

)α/2
ψ(r, t) + U(r, t)ψ(r, t)

+
∫

dr′V (|r − r′|)ψ†(r′, t)ψ(r′, t)ψ(r, t). (2)

Equation (2) is a Schrödinger like equation with frac-
tional derivatives applied on the spatial variable, instead
of the usual ones. The fractional Schrödinger equation
equation, without the interaction term, was analyzed in
several scenarios, in a first quantized perspective, as pre-
viously mentioned. In particular, the solution for the free
case (i.e., absence of external fields and without interac-
tion) is the Lévy distribution, as we discuss below. By us-
ing the Fourier transform, we can simplify equation (2) to

i�
∂

∂t
ψ(p, t) =

|p|α
2mα

ψ(p, t) +
∫

dpU(p, t)ψ(p, t)

+
1
2
V

∫

dp′ψ†(p′, t)ψ(p′, t)ψ(p, t), (3)

by considering, for simplicity, the interaction potential
V (|r−r′|) = V = constant (Hartree approximation). From
this equation, we can observe that the presence of the frac-
tional derivative changes the exponent of the momentum
and the solution in the absence of external and interac-
tion potentials is ψ(p, t) = e−i|p|α/(2mα�)tψ(p, 0). As men-
tioned above, this is the solution that may be related to
the Lévy distribution, which is characterized by a power
law asymptotic behavior in the r representation.

Now, let us analyze the quantum statistics which
emerges from the above scenario. To perform this anal-
ysis, we use the thermal Green function approach, which
may be directly related to the dynamical aspects of the
ψ(r, t) and may be used to obtain several physical quan-
tities, such as density of particles, specific heat and other
thermodynamical quantities. Following [36], we define the
one-particle Green function as

G(1, 1′) =
1
i
〈T(ψ(1)ψ†(1′))〉 (4)

where the thermodynamic averages, 〈· · · 〉, are evaluated
by taking the grand canonical ensemble into account, T is
the Dyson time-ordering operator and 1 and 1′ correspond
to the variables r1, t1 and r1′ , t1′ , respectively. From this

equation, we can define the correlation functions

G>(1, 1′) =
1
i
〈ψ(1)ψ†(1′)〉,

G<(1, 1′) = ±1
i
〈ψ†(1′)ψ(1)〉, (5)

where > and < represent the Green function to t1 > t1′ ,
G = G> and t1 < t1′ , G = G<. The upper (lower)
sign correspond to the bosonic (fermionic) case. From
equations (1, 5) it is possible to show that G<(1, 1′)|t1=0 =
±eβµG>(1, 1′)|t1=−iβ by using the cyclic invariance of the
trace (Tr(ÂB̂) = Tr(B̂Â)). This result shows that the
above Green function satisfies the same periodic boundary
condition of the usual one [36], in contrast to the one [37]
formulated within the Tsallis formalism [38]. Similarly to
what is done in the usual case, we may introduce the spec-
tral function, A(p, ω), defined as

A(p, ω) = G>(p, ω) ∓ G<(p, ω). (6)

By using equation (6) and the boundary condition, we can
express G< and G> as follows:

G>(p, ω) = (1 ± f(ω))A(p, ω),
G<(p, ω) = f(ω)A(p, ω), (7)

i.e., in terms of the spectral function, with f(ω) =
1/(e(ω−µ) ± 1). The equation of motion satisfied by
equation (4) is

i�
∂

∂t
G(1, 1′) = δ(1 − 1′) +

1
2mα

(−�
2∇2

)α/2 G(1, 1′)

+ U(r, t)G(1, 1′) +
∫

dr′V (|r − r′|)
× ψ†(r′, t)G(1, 2; 1′, 2′)|t2=t1 , (8)

which may be obtained by employing the Heisenberg equa-
tion, where G(1, 2; 1′, 2′) is given by

G(12, 1′2′) =
1
i2
〈T(ψ(1)ψ(2)ψ†(2′)ψ†(1′))〉 . (9)

Note that to obtain a solution for equation (8) we may
consistently approximate equation (9) in accordance with
the propagator interpretation of G(1, 1′). In this direc-
tion, the first approximation to be considered to deal with
equation (9) is the Hartree-Fock approximation, given by
G(12, 1′2′) = G(1, 1′) G(2, 2′) ± G(1, 2′)G(2, 1′). In addi-
tion, equation (8) recovers the usual form [36] for α = 2.
From the above results, we may identify G<(p, ω) with the
average of particle density with momentum p and energy
ω, i.e.,

G<(p, ω) = 〈n(p, ω)〉 =
A(p, ω)

eβ(ω−µ) ∓ 1
(10)

and, as in the usual case, by means of equation (10)
we may obtain the pressure for this system by using
the equation P (β, µ) =

∫ µ

−∞ dµ′〈n(p, ω)〉. Other useful
result which may be obtained in this framework concerns
the grand canonical potential, Ξ. By writing a coupling
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constant, λ, in front of the interaction energy and, for
simplicity, considering the absence of external potential,
i.e., U(r, t) = 0, ̂HFrac = ̂HFrac, o + λ̂V , where

̂HFrac, o =
1

2mα

∫

drψ†(r, t)
(−�

2∇2
)α/2

ψ(r, t) (11)

and

̂V =
1
2

∫

dr

×
∫

dr′ψ†(r, t)ψ†(r′, t)V (|r − r′|)ψ(r, t)ψ(r′, t), (12)

it is possible to write the grand canonical potential as
follows:

Ξ(β, V, µ;λ) = Ξ(β, V, µ; 0)

− βV

∫ 1

0

dλ

λ

∫

dp
(2π�)3

×
∫

dω

2π
ω − |p|α/(2mα)

2
Aλ(p, ω)f(ω). (13)

The first term corresponds to the grand canonical poten-
tial in the absence of potential energy and the second term
is due to the interaction among the particles.

3 Application

As an application, we use the above formalism to explore
the temperature dependence of the specific heat of non-
crystalline systems (glasses). In addition to the phonons
present in these systems, at very low temperature their
specific heat shows a non-usual behavior connected with
the noncrystalline structure of the material [34,35]. This
non-usual temperature behavior of the specific heat, which
is usually fitted at low temperature by the expression
C = ˜AT n + ˜BT 3, has been investigated by several mod-
els as mentioned at the introduction. In this direction,
we expect that this expression for the specific heat natu-
rally arise from the phenomenological model investigated
here, in contrast, for example, to the model of tunnelling
states [40].

To test the potentiality of the formalism presented
above, we assume that a system in this situation
may be described by the following Hamiltonian ̂H =
̂HFrac

⊕

̂HDebye. The first Hamiltonian ̂HFrac, given by
equation (1), is expected to play an important hole at
very low temperature, where the non-crystalline charac-
teristics of the system manifest quantum effects, lead-
ing to a non-usual behavior for the specific heat. This
temperature behavior is different from the one of a crys-
talline solid, which is well accounted for by the Debye
model and may be related to the energy excitation in-
trinsic to the amorphous state. The second Hamiltonian,
̂HDebye, is related to the presence of phonons in the sys-
tem and, similarly to what occurs in the conventional crys-
talline case, gives the Debye contribution for the specific
heat, but now including an excess term [39], typical of
glasses. For the ̂HFrac, we consider the spectral function

Fig. 1. Behavior of the specific heat for two non-crystalline
systems versus temperature. These experimental data (circles
and squares) are fitted by the expression C = aT 3/α + b T 3

(α, a and b are parameters) obtained from the formalism de-
veloped here based on the fractional approach. The values of
parameters a, b and α for SiO2 are 1.40×10−6 [J/(g K1+3/α)],
1.70×10−6[J/(g K4)] and 2.60, respectively. For GeO2, we have
that a = 2.05× 10−6[J/(g K1+3/α)], b = 4.48× 10−6[J/(g K4)]
and α = 2.80.

A(p, ω) = 2πδ(ω − |p|α/(2mα)), which implies absence
of interactions terms. Thus, the specific heat obtained
from the Hamiltonian ̂H = ̂HFrac

⊕

̂HDebye is given by
C = CFrac + CDebye, where CFrac ∝ T

3
α and CDebye ∼ T 3

for very low temperatures. The parameters α and mα are
obtained from the connection of the above expression for
the specific heat (in a simplified form, C = a T 3/α + b T 3)
and the experimental data, suggesting that the values of
α and mα are related to the characteristic of the system.
In Figure 1, we show the experimental data of two non-
crystalline systems (SiO2 and GeO2 obtained from [23])
and the specific heat C obtained within the previous for-
malism. The agreement between the specific heat and the
experimental data suggests that the formalism based on
the fractional derivatives may find applications, as a phe-
nomenological model, in non-crystalline systems at very
low temperature. Another important property whose tem-
perature behavior is considered anomalous is the thermal
conductivity κ. To obtain the temperature behavior for
this quantity we follow the procedure employed in [34]
which is based on the kinetic formula κ =

∫ ∞
0 C(ω)cl(ω)dω

where c is the sound velocity, l(ω) is the mean free path,
and C =

∫ ∞
0

C(ω)dω is the heat capacity. After some cal-
culations by considering, for simplicity, l(ω) ∝ ωγ , it is
possible to show that the thermal conductivity may be
written as κ = K1T

3
α +γ + K2T

3+γ where K1 and K2 are
constants.

4 Summary and conclusions

To sum up, the quantum statistics emerging from the
Hamiltonian given by equation (1) was analyzed. This
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Hamiltonian was formulated in order to incorporate the
fractional derivative in the kinetic term, instead of the
usual one, and to analyze its consequences. It also has as
a particular case the fractional Schrödinger worked out
in references [22]. The quantum statistics obtained from
equation (1) preserves several properties present in the
usual case, in particular, the boundary condition. This
last feature is not verified to the quantum statistics which
emerges from the nonextensive statistics [37]. In this direc-
tion, it is necessary to mention that a perturbation the-
ory for the Green functions, obtained for the fractional
case, can be formulated as the usual case just by us-
ing the boundary condition to obtain the collision effects
on the thermal Green function. Other remarkable aspect
about this formalism concerns its eventual application, as
a phenomenological model, to physical systems such as
non-crystalline solids at very low temperature. In this di-
rection, we also expect that this phenomenological model
may be used to discuss the energy excitation intrinsic to
the amorphous state. The complete scenario could be then
as follows. At very low temperature, the dynamics of the
glassy system is governed by a Hamiltonian in the form of
a sum of two terms: one of them represented by (1), and
another one by a anharmonic term like the one discussed
in [41]. At low temperature, i.e., near the temperature of
the boson peak (between 5 and 50 K), the dynamics is
still governed by the complete Hamiltonian (i.e. the sum),
but the contribution coming from (1) being negligible, and
the term represented by the anharmonic part playing the
dominant role. In this framework, to cover a wide range
of temperature, the specific heat of the system could be
well described by a Hamiltonian written as the sum of
two contributions, with each term contributing more sig-
nificantly or not according to the ranges of temperatures
considered. Further investigations should be performed
along these lines. Anyway, we hope that the formalism
presented above may be useful to investigate systems pre-
senting non-usual behavior and requiring the analysis of a
non-conventional Hamiltonian.
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